Application of 1,2,3,4-Tetrahydroquinoline-6-carboxylic acid

As the rapid development of chemical substances, we look forward to future research findings about 4488-22-6

The chiral-catalyst compound, name is [1,1′-Binaphthalene]-2,2′-diamine,cas is 4488-22-6, mainly used in chemical industry, its synthesis route is as follows.,4488-22-6

Sodium nitrite (1.2g, 18.0mmol) in 3mL of water was added slowly to a stirred solution of BINAM (1.2g, 4.0mmol) and HBF4 (45% in H2O, 10mL) at 0C. Then the reaction was stirred at 0C for 30min and further stirred at room temperature for 30min. The resulting yellow solid was filtered using a Buechner funnel and washed with cold HBF4 (2¡Á5mL), H2O (2¡Á10mL) and EtOH (10mL). The diazonium salt 1 solid (1.8g) was dried under a vacuum desiccator and stored at 0C (yellow solid).

As the rapid development of chemical substances, we look forward to future research findings about 4488-22-6

Reference£º
Article; Ganapathy, Dhandapani; Sekar, Govindasamy; Catalysis Communications; vol. 39; (2013); p. 50 – 54;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 4488-22-6

The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

4488-22-6, [1,1′-Binaphthalene]-2,2′-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

EXAMPLE 1 Preparation of (R)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthyl-2,2′-diamine (R-1): 200 mg (R)-1,1′-binaphthyl-2,2′-diamine (purchased from Aldrich Chemical Company), 20 mg PtO2 and 20 mL glacial acetic acid were charged into a 50 mL autoclave equipped with a magnetic stirring bar. The autoclave was closed and 1,000 KPa hydrogen gas was charged. The solution was stirred with a magnetic stirrer for 120 hours at room temperature. After releasing the hydrogen gas and removing the solid catalyst by filtration, the mixture was neutralized with aqueous NaHCO3 solution followed by extraction with 50 mL ethyl acetate three times. The combined extracts were dried with sodium sulfate and the solvent was removed with a rotary evaporator to give 210 mg of crude product (R-1). The crude product was purified by crystallization with 5 mL ethyl acetate and 15 mL hexane to give 180 mg crystals of R-1 (87.5% of theoretical yield)., 4488-22-6

The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; The Hong Kong Polytechnic University; US5919981; (1999); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of 2-Imidazolidone

As the rapid development of chemical substances, we look forward to future research findings about 673-06-3

The chiral-catalyst compound, name is D-Phenylalanine,cas is 673-06-3, mainly used in chemical industry, its synthesis route is as follows.,673-06-3

Embodiment 1 N-(Benzyloxycarbonyl)-D-phenylalanine A 15.0 g sample of D-phenylalanine was dissolved in 45 ml of aqueous solution containing 7.26 g of 50% sodium hydroxide. This solution was stirred at 0-10 C. as 16.3 g of benzyl chloroformate was added rapidly in portions. The resulting reaction was mildly exothermic, and shortly after addition, solids precipitated. An additional 45 ml of water and 3.63 g of 50% sodium hydroxide were added, causing most of the solids to redissolve. The reaction mixture was stirred for 20 minutes and then acidified with 6N hydrochloric acid. The resulting solids were filtered, washed with water and then with hexane, and dried by suction and then under vacuum to give 47 g of white solids. These solids dissolved in ether were washed twice with 1N hydrochloric acid and then with water, dried over MgSO4 and stripped to 35 C. at 2.5 mm Hg to give 27.7 g of the desired product as a colorless oil.

As the rapid development of chemical substances, we look forward to future research findings about 673-06-3

Reference£º
Patent; Shell Oil Company; US4560515; (1985); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of 1,1-Dioxo-isothiazolidine

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

The chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine,cas is 1121-22-8, mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

General procedure: A methanolic solution (10mL) of (¡À)-trans-1,2-diaminocyclohexane (dach) (0.23g, 2.0mmol), in a Schlenk tube, was added drop-wise to a methanolic solution (20mL) of substituted salicylaldehyde-imidazolium salt H(R1)sal(Im+-R2R3-Cl-) 3a-f (4.0mmol) into a 100ml Schlenk flask under nitrogen atmosphere. The reaction mixture was stirred at 60C overnight. MeOH was partially removed under reduced pressure on a rotary evaporator, and the yellow products of 4a-f were precipitated by ethyl acetate and kept in the refrigerator overnight. The precipitate was sonicated with Et2O (3¡Á25mL), collected by filtration and dried under vacuum.

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

Reference£º
Article; Elshaarawy, Reda F.M.; Janiak, Christoph; European Journal of Medicinal Chemistry; vol. 75; (2014); p. 31 – 42;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of 6-Methoxy-1,2,3,4-tetrahydroisoquinoline hydrochloride

As the rapid development of chemical substances, we look forward to future research findings about 602-09-5

The chiral-catalyst compound, name is [1,1′-Binaphthalene]-2,2′-diol,cas is 602-09-5, mainly used in chemical industry, its synthesis route is as follows.,602-09-5

Example 15: Separation of (S)-1 , 1 ‘-bi-2-naphthol from (RS)-1 ,1′-bi-2-naphthol via formation of binary/ternary co-crystal with 3-alkyl-4-(1′-phenylethylamino)butanoic acid. 3-alkyl-4-(1′-phenylethylamino)butanoic acid (0.385 moles) was dissolved in methanol (five volumes) and (RS)-1 ,1′-bi-2-naphthol (0.35 moles, i.e. 100 g) was added to it at room temperature. The mixture was stirred at 50 C for 2 hour, during which time solid precipitate came out from the reaction mixture. Reaction mixture was allowed to cool to room temperature and filtered under reduced pressure to obtain solid co-crystal.Co-crystal was suspended in methanol (five volumes) and stirred at 50 C for 2 h. After which reaction mixture was cooled to room temperature and filtered under reduced pressure to obtain pure solid co-crystal.Pure co-crystal was suspended in a biphasic mixture of ethyl acetate (2.5 volumes) and 1Lambda/ hydrochloric acid (2.5 volumes) and stirred for 30 to 45 min to decompose the complex. Aqueous phase was washed with 2 volumes of ethyl acetate. Organic phases were mixed together and washed with brine, followed by drying over sodium sulfate. Solvent was evaporated under vacuum to obtain optically pure (S)-1 ,1′-bi-2-naphthol which was analyzed for ee on chiral chromatography.Chiral chromatographic conditions for (S)-1.1′-bi-2-naphtholRetention time for (S)-1, 1′-bi-2-naphthol : 17.77 minRetention time for (R)-1, 1′-bi-2-naphthol : 20.64 minInstrument HPLC using a Shimadzu LC 2010 system equipped Pump, Injector, UV detector and Recorder Column: Chiral Pak IA, 4.6mm x 250mm, 5muiotaeta, column oven temperature 40 C Detector. UV at 230 nm.Mobile phase: n-hexane (94) :n-butanol (5) : ethanol (1): trifluoroacetic acid (0.3 mL) Flow rate: 1 mL minInjection volume: 20 muIota.Yield and enantiomeric excess of (S)-1 ,1′-bi-naphthol using various 3-alkyl-4-(1′- phenylethylamino)butanoic acids for co-crystal formation during resolution of (RS)-1 ,1 – bi-naphthol are tabulated below in table 4:Table 4* Data represented for antipode of (S)-1 ,1’-bi-naphthol.

As the rapid development of chemical substances, we look forward to future research findings about 602-09-5

Reference£º
Patent; LUPIN LIMITED; ROY, Bhairab, Nath; SINGH, Girij, Pal; LATHI, Piyush, Suresh; MITRA, Rangan; WO2012/7814; (2012); A2;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Application of Ethyl quinuclidine-4-carboxylate

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

The chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine,cas is 1121-22-8, mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

In a pyrex vial 4-chloro-2-methylphthalazin-l (2H)-one (300 mg, 1.54 mmol), RuPhos 3rd generation precatalyst (121 mg, 0.154 mmol), and sodium tert-butoxide (444 mg, 4.62 mmol) were added, the vial was sealed, and the atmosphere evacuated and purged with N2 (3X). (+/-)-Transcyclohexanediamine (370 mu, 3.08 mmol) in toluene (6 mL) was then added, and the reaction was heated at 70 C overnight. The crude reaction was concentrated in vacuo, deposited onto silica gel with aid of methanol, and purified by silica gel chromatography using 85% 90: 10:1 dichloromethane :methanol:NH40H as eluent. The product fractions were concentrated and lyophilized to provide the title compound (191 mg, 45% yield). LCMS M/Z (M+H) 273.

As the rapid development of chemical substances, we look forward to future research findings about 1121-22-8

Reference£º
Patent; GENENTECH, INC.; CONSTELLATION PHARMACEUTICALS, INC.; ALBRECHT, Brian, K.; COTE, Alexandre; CRAWFORD, Terry; DUPLESSIS, Martin; GOOD, Andrew, Charles; LEBLANC, Yves; MAGNUSON, Steven; NASVESCHUK, Christopher, G.; PASTOR, Richard; ROMERO, F. Anthony; TAYLOR, Alexander, M.; (179 pag.)WO2016/36954; (2016); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

In a 3 mL screw cap vial containing a magnetic stir bar 5- (benzyloxy) -pent-1-yl)(5- (benzyloxy) -pent-1-yne) (87.1 mg, 0.5 mmol),N-benzylhydroxylamine (67.7 mg, 0.55 mmol),RuCp (PPh3) 2Cl (18.1 mg, 0.025 mmol) and toluene (1.25 mL) were added and the mixture was stirred at a reaction temperature of 100 C for 24 hours.The progress of the reaction was monitored by TLC.After completion of the reaction, the mixture was passed through silica gel to remove the catalyst, and the silica was washed with ethyl acetate. The product solution was concentrated in vacuo and purified by silica gel chromatography.A yield of 22.5 mg (15%) was obtained. To a screw cap vial was added 5- (benzyloxy) -pent-1-yne (87.1 mg, 0.5 mmol)((¡À) -trans-diaminocyclohexane (33 mul, 0.275 mmol), N-hydroxybenzotriazole (74.3 mg, 0.55 mmol)RuCp (PPh3) 2Cl (18.1 mg, 0.025 mmol)And t-butanol (1.25 mL)And the reaction time was changed to 4 hours. The reaction was carried out in the same manner as in Example 1 to synthesize amide. 97 mg (78%) was obtained., 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Patent; Seoul National University Industry-Academic Cooperation Foundation; Lee, Chul Beom; Lee, Dong Gil; Park, Ho Jun; (33 pag.)KR2017/11773; (2017); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 4488-22-6

The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.4488-22-6,[1,1′-Binaphthalene]-2,2′-diamine,as a common compound, the synthetic route is as follows.

Under nitrogen conditions, add tris (dibenzylidene-base acetone) dipalladium (37 mg, 0.04 mmol, purchased from ANEG) to Schlenk bottles with magnetons, 1,1′-Binaphthyl-2,2′-bisdiphenylphosphine (50 mg, 0.08 mmol, purchased from Anagi), cesium carbonate (3.65 g, 11.2 mmol, purchased from Anagi), 2-trifluoromethanesulfonyl cycloheptatrienone (4.88 g, 19.2 mmol), 1,1′-bi-2-naphthylamine (2.27 g, 8 mmol, purchased from Enagi) and 50 ml of toluene. The resulting mixture was stirred at 100 C for 24 hours. The reaction was completed and the temperature was reduced to room temperature. After the toluene-insoluble solid was filtered off with diatomaceous earth, 100 mesh silica gel was added to the resulting solution to spin dry the sample. The obtained crude product was then passed through a 200-300 mesh silica gel column, using ethyl acetate as an eluent, and the eluent was spin-dried to obtain a brown solid (2.68 g, yield 68%)., 4488-22-6

The synthetic route of 4488-22-6 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; University of Science and Technology of China; Chen Changle; Zhang Pan; (17 pag.)CN110423246; (2019); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 1121-22-8

1121-22-8, The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: 2.6.2 ;(alphaR,3aR,7aR)-rel-2-(1-hydroxyethyl)-3a,4,5,6,7,7a-Hexahydro-1H-benzimidazole (2); In a typical catalytic reaction, 1.1 mmol of glycerol dissolved in6.0 ml of water were introduced in a Schlenk tube equipped withan argon inlet and deaerated by bubbling argon through a needlefor 15 min. After addition of the catalyst (0.011 mmol) and of thecocatalyst (0.11 mmol), the reaction vessel was closed with a serumcap serumcap and the amine (1.1 mmol) was added by a micro-syringe; thenthe vessel was heated under vigorous stirring to the chosen reactiontemperature in a thermostatted oil bath. After the desired reactiontime, the catalytic reaction was stopped by cooling the Schlenk tubeto r.t. and letting air in under stirring.

1121-22-8, The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Crotti, Corrado; Farnetti, Erica; Licen, Sabina; Barbieri, Pierluigi; Pitacco, Giuliana; Journal of Molecular Catalysis A: Chemical; vol. 382; (2014); p. 64 – 70;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 4488-22-6

4488-22-6, Big data shows that 4488-22-6 is playing an increasingly important role.

4488-22-6, [1,1′-Binaphthalene]-2,2′-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(1) Synthesis of N,N’-di-p-toluenesulfonyl-1,1′-binaphthyl-2,2′-diamine Under nitrogen atmosphere, to a solution in which 1,1′-binaphthyl-2,2′-diamine (0.5 mmol) was dissolved in pyridine (1 mL) was added p-toluenesulfonyl chloride (1.1 mmol) at room temperature, and the mixture was reacted for 5 to 12 hours with stirring. After completion of the reaction, the resulting red suspension was diluted with ethyl acetate, and back-extracted with 1N hydrochloric acid to remove pyridine. The resulting organic layer was dried with sodium sulfate to remove the solvent, and the residue was purified by column chromatography to obtain an objective substance as a pale yellow to white solid in more than 95% yield.

4488-22-6, Big data shows that 4488-22-6 is playing an increasingly important role.

Reference£º
Patent; Terada, Masahiro; Uraguchi, Daisuke; Sorimachi, Keiichi; Shimizu, Hideo; US2007/142639; (2007); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare