As the rapid development of chemical substances, we look forward to future research findings about 602-09-5
The chiral-catalyst compound, name is [1,1′-Binaphthalene]-2,2′-diol,cas is 602-09-5, mainly used in chemical industry, its synthesis route is as follows.,602-09-5
Example 15: Separation of (S)-1 , 1 ‘-bi-2-naphthol from (RS)-1 ,1′-bi-2-naphthol via formation of binary/ternary co-crystal with 3-alkyl-4-(1′-phenylethylamino)butanoic acid. 3-alkyl-4-(1′-phenylethylamino)butanoic acid (0.385 moles) was dissolved in methanol (five volumes) and (RS)-1 ,1′-bi-2-naphthol (0.35 moles, i.e. 100 g) was added to it at room temperature. The mixture was stirred at 50 C for 2 hour, during which time solid precipitate came out from the reaction mixture. Reaction mixture was allowed to cool to room temperature and filtered under reduced pressure to obtain solid co-crystal.Co-crystal was suspended in methanol (five volumes) and stirred at 50 C for 2 h. After which reaction mixture was cooled to room temperature and filtered under reduced pressure to obtain pure solid co-crystal.Pure co-crystal was suspended in a biphasic mixture of ethyl acetate (2.5 volumes) and 1Lambda/ hydrochloric acid (2.5 volumes) and stirred for 30 to 45 min to decompose the complex. Aqueous phase was washed with 2 volumes of ethyl acetate. Organic phases were mixed together and washed with brine, followed by drying over sodium sulfate. Solvent was evaporated under vacuum to obtain optically pure (S)-1 ,1′-bi-2-naphthol which was analyzed for ee on chiral chromatography.Chiral chromatographic conditions for (S)-1.1′-bi-2-naphtholRetention time for (S)-1, 1′-bi-2-naphthol : 17.77 minRetention time for (R)-1, 1′-bi-2-naphthol : 20.64 minInstrument HPLC using a Shimadzu LC 2010 system equipped Pump, Injector, UV detector and Recorder Column: Chiral Pak IA, 4.6mm x 250mm, 5muiotaeta, column oven temperature 40 C Detector. UV at 230 nm.Mobile phase: n-hexane (94) :n-butanol (5) : ethanol (1): trifluoroacetic acid (0.3 mL) Flow rate: 1 mL minInjection volume: 20 muIota.Yield and enantiomeric excess of (S)-1 ,1′-bi-naphthol using various 3-alkyl-4-(1′- phenylethylamino)butanoic acids for co-crystal formation during resolution of (RS)-1 ,1 – bi-naphthol are tabulated below in table 4:Table 4* Data represented for antipode of (S)-1 ,1’-bi-naphthol.
As the rapid development of chemical substances, we look forward to future research findings about 602-09-5
Reference£º
Patent; LUPIN LIMITED; ROY, Bhairab, Nath; SINGH, Girij, Pal; LATHI, Piyush, Suresh; MITRA, Rangan; WO2012/7814; (2012); A2;,
Chiral Catalysts
Chiral catalysts – SlideShare