Downstream synthetic route of 7181-87-5

The synthetic route of 7181-87-5 has been constantly updated, and we look forward to future research findings.

7181-87-5,7181-87-5, 1,3-Dimethyl-1H-benzo[d]imidazol-3-ium iodide is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

(Step 1) A mixture of o-phenylenediamine (4.13 g, 38.2 mmol) and formic acid (2.0 mL) was reflux for 2 h. To this was slowly added 15% aqueous sodium hydroxide and the resulting mixture was basified. The crude benzimidazole (11) was filtrated and washed with ice-cold water. This crude product was used for the following reaction without purification. (Step 2) To a solution of 11 and sodium hydroxide (185.6 mg, 4.640 mmol) in MeOH (13 mL) was added iodomethane (6.1 mL, 98 mmol) at room temperature and the mixture was refluxed for 24 h. After the mixture was concentrated, the residue were recrystallized from ethanol. The mixture was filtrated to obtain 12 (8.03 mmol, 21% yield) as white crystal. (Step 3) To a solution of 12 (563.5 mg, 2.056 mmol) in MeOH (4 mL) was slowly added sodium borohydride (80.7 mg, 2.13 mmol) at 0 C under an argon atmosphere. The resulting mixture was stirred at room temperature for 40 min. The mixture was purified by chromatography on silica gel (hexane/ethyl acetate = 10 :1 as eluent) to obtain 2d as a green oil. 1H NMR (400 MHz, CDCl3) delta 6.67 (2H, ddd, J = 8.8, 3.2, 3.2 Hz, Ph), 6.42 (2H, ddd, J = 8.8, 3.2, 3.2 Hz, Ph), 4.32 (2H, s, CH2), 2.73 (6H, s, CH3); 13C NMR (100 MHz, CDCl3) delta 143.1, 119.1, 106.1, 80.2, 34.4. Spectral data were consistent with those previously reported in the literature. 17

The synthetic route of 7181-87-5 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Igarashi, Tomohito; Tayama, Eiji; Iwamoto, Hajime; Hasegawa, Eietsu; Tetrahedron Letters; vol. 54; 50; (2013); p. 6874 – 6877;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 141556-45-8

As the paragraph descriping shows that 141556-45-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.141556-45-8,1,3-Dimesityl-1H-imidazol-3-ium chloride,as a common compound, the synthetic route is as follows.

In analogy to S. P. Nolan, Organometallics 1999, 18, 5416-5419, a suspension of 1.55 g (4.33 mmol) of 1,3-bis(2,4,6-trimethylphenyl)-imidazolium chloride (commercially available from Strem Chemicals Inc., D-77672 Kehl) and 2.70 ml (4.59 mmol) of potassium tert.-pentylate (1.7 M in toluene) was suspended in 20 ml hexane and heated at 50 C. for 10 min. 2.00 g (2.17 mmol) of [RuCl2(Pcy3)2(3-phenyl-indenylidene)] was added and the resulting red suspension stirred at 50 C. for 15 h. The reaction mixture was allowed to cool to r.t., the formed brown crystals were filtered off and washed with 40 ml pentane. The crystals were dissolved in 30 ml dichloromethane. 30 ml water was added and the organic layer was separated and dried over Na2SO4. The orange solution was evaporated to dryness and the isolated red crystals washed with 30 ml pentane and dried under vacuum to yield 2.05 g (81% yield) of the title compound. MS: 946.3 (M+). 31P-NMR (121 MHz, C6D6): 27.4 ppm. 1H-NMR (300 MHz, C6D6): 1.00-1.40 (m, 18H); 1.47-1.68 (m, 6H); 1.70-1.84 (m, 3H); 1.80 (s, 3H); 1.85-1.95 (m, 3H); 2.04 (s, 3H); 2.20 (s, 3H); 2.24 (s, 3H); 2.45-2.60 (m, 3H); 2.65 (s, 3H); 2.67 (s, 3H); 6.03 (s, 1H); 6.16 (s, 2H); 6.47 (s, 1H); 6.95 (s, 2H); 7.10-7.37 (m, 6H); 7.85 (s, 1H); 7.87-7.93 (m, 2H); 9.12 (d, 1H, J=6.8 Hz). Anal. calcd. for C54H67N2Cl2PRu: C, 68.48; H, 7.13; N, 2.96; Cl, 7.49. Found: C, 68.71; H, 7.11; N, 3.77; Cl, 7.37., 141556-45-8

As the paragraph descriping shows that 141556-45-8 is playing an increasingly important role.

Reference£º
Patent; Puentener, Kurt; Scalone, Michelangelo; US2006/241156; (2006); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 173035-10-4

173035-10-4 1,3-Dimesityl-4,5-dihydro-1H-imidazol-3-ium chloride 2734917, achiral-catalyst compound, is more and more widely used in various.

173035-10-4, 1,3-Dimesityl-4,5-dihydro-1H-imidazol-3-ium chloride is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

RuCl2(?CHPh)(PCy3)s (phenylmethylene-bis(tricyclohexylphosphine) ruthenium dichloride, ?catalyst (I)?) (6.00 g, 7.29 mmol, 1.0 eq.), IMesH2.HCl salt prepared above (2 eq.), and potassium t-butoxide (2 eq.) were placed in a Schlenk flask. 60 mL of anhydrous degassed hexanes (Aldrich SureSeal bottle) were added. A vacuum was applied to further degas the reaction mixture, which was then heated to 60 C. for 24 hours. The suspension changed color from purple to orange-brown over the reaction time. After approximately 24 hr, the mixture was cooled to room temperature, and an excess of 1:1 isopropanol:water (180 mL) was added. The mixture was stirred rapidly in air for 30 min., then filtered using a medium porosity frit, and washed with isopropanol-water (3¡Á100 mL) and hexanes (3¡Á100 mL). The solids were dried in in vacuo, and the yield was approximately 75%. 1H NMR (CD2Cl2, 400 MHz) delta 19.16 (s, 1H), 7.37-7.05 (m, 9H), 3.88 (s, 4H), 2.56-0.15 (m, 51H); 31P NMR (CD2Cl2, 161.9 MHz) delta 31.41; HRMS (FAB) C45H65Cl2N2PRu [M+] 848.3306, found 848.3286., 173035-10-4

173035-10-4 1,3-Dimesityl-4,5-dihydro-1H-imidazol-3-ium chloride 2734917, achiral-catalyst compound, is more and more widely used in various.

Reference£º
Patent; CALIFORNIA INSTITUTE OF TECHNOLOGY; Grubbs, Robert H.; Chatterjee, Arnab K.; Choi, Tae-Lim; Goldberg, Steven D.; Love, Jennifer A.; Morgan, John P.; Sanders, Daniel P.; Scholl, Matthias; Toste, F. Dean; Trnka, Tina M.; (27 pag.)US9403854; (2016); B2;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 22795-99-9

22795-99-9 (S)-(1-Ethylpyrrolidin-2-yl)methanamine 643457, achiral-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22795-99-9,(S)-(1-Ethylpyrrolidin-2-yl)methanamine,as a common compound, the synthetic route is as follows.

Example 5 (S)-(-)-N-[(1-Ethyl-2-pyrrolidinyl)methyl]-3-propyl-2,5,6-trimethoxybenzamide (Method A) 3-Propyl-2,5,6-trimethoxybenzoic acid (23 g, 0.09 mol) was treated with thionyl chloride and (2S)-(-)-1-ethyl-2-aminomethylpyrrolidine as described in example 4. Yield 10.6 g (32percent). M.p. 68¡ã-70¡ã C. (i-Pr2 O). 1 H-NMR (CDCl3): delta6.73 (s,1H), 6.40 (b,1H), 3.85 (Sx2,6H), 3.76 (s,3H), 0.9-3.8 (m,21H)ppm., 22795-99-9

22795-99-9 (S)-(1-Ethylpyrrolidin-2-yl)methanamine 643457, achiral-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Astra Lakemedel Akteibolag; US5240957; (1993); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 250285-32-6

250285-32-6 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride 2734913, achiral-catalyst compound, is more and more widely used in various.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.250285-32-6,1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride,as a common compound, the synthetic route is as follows.

taken the imidazole chlorine salt [(R 1 NCHCHNR 1) CH]Cl (0.42 g, 1.0 mmol), ferrous bromide (0.22 g, 1.0 mmol) and sodium bromide (0.33 g, 3.2 mmol), in thf as the solvent, the 60 C reaction under 16 hours. Centrifugal, supernatant fluid transfer, remove precipitation, in the supernatant by adding triphenylphosphine (0.26 g, 1.0 mmol), in 30 C reaction under 6 hours. Vacuum to remove the solvent, hexane washing, drying, in a mixed solvent of toluene and tetrahydrofuran extraction, centrifugal supernatant fluid transfer, after concentrating the serum to obtain a target product, yield 85%., 250285-32-6

250285-32-6 1,3-Bis(2,6-diisopropylphenyl)imidazolium chloride 2734913, achiral-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Suzhou University; sun, hongmei; li, zhuang; liu, ling; chen, qi; (17 pag.)CN105541922; (2016); A;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 22795-99-9

The synthetic route of 22795-99-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22795-99-9,(S)-(1-Ethylpyrrolidin-2-yl)methanamine,as a common compound, the synthetic route is as follows.,22795-99-9

General procedure: (2-(7-Aza-1H-benzotriazole-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate), (HATU) (1.2 equivalents) was added to a solution of acid (1 equivalent), the appropriate amine (1.5 equivalents) and DIEA (2 equivalents) in dry acetonitrile (10 mL) at room temperature under argon atmosphere. The reaction mixture was stirred at room temperature for 1-2 h. Solvent was evaporated under reduced pressure and the crude product was purified using a Teledyne Isco Combiflash Rf purification machine to provide the desired amide in excellent yield.

The synthetic route of 22795-99-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Mathew, Bini; Hobrath, Judith V.; Connelly, Michele C.; Kiplin Guy; Reynolds, Robert C.; Bioorganic and Medicinal Chemistry Letters; vol. 27; 20; (2017); p. 4614 – 4621;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 22795-99-9

22795-99-9 (S)-(1-Ethylpyrrolidin-2-yl)methanamine 643457, achiral-catalyst compound, is more and more widely used in various.

22795-99-9, (S)-(1-Ethylpyrrolidin-2-yl)methanamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

49 g of methyl 2-methoxy-5-sulfamoylbenzoate and(S)-1-ethyl-2-aminomethyltetrahydropyrrolidine 26.5gAdd to the reaction bottle,The reaction was carried out at 90 to 100 ¡ã C for 5 hours under nitrogen protection.The reaction was completed, cooled to 80 ¡ã C, 50 g of ethanol was added, and the mixture was stirred and refluxed for 10 minutes.Cool to 5 ¡ã C and stir for 2 hours, filter,It was washed with ethanol and dried at 65 ¡ãC.The yield was 93.8percent, and the purity was 99.2percent., 22795-99-9

22795-99-9 (S)-(1-Ethylpyrrolidin-2-yl)methanamine 643457, achiral-catalyst compound, is more and more widely used in various.

Reference£º
Patent; Jiangsu Tianshili Diyi Pharmaceutical Co., Ltd.; Liu Jinping; Liu Wenzheng; Zhu Zhanyuan; Yang Guojun; (5 pag.)CN103804265; (2018); B;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

New learning discoveries about 14098-24-9

The synthetic route of 14098-24-9 has been constantly updated, and we look forward to future research findings.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.14098-24-9,Benzo-18-crown 6-Ether,as a common compound, the synthetic route is as follows.

General procedure: The carbonyl substrate (0.1 g) is dissolved in 1-2 mL of anhydrous CHCl3 and 2.0 equiv of a benzocrown ether is added to the solution. To this mixture, CF3SO3H (8.0 equiv; H2SO4 may be used in some cases) is added dropwise with stirring. The reaction is stirred at room temperature for at least 2 h, after which, the mixture is poured over several grams of ice. The resulting solution is extracted three times with CHCl3. The organic phase is subsequently washed three times with water and dried over MgSO4 solution. Removal of the solvent provides the product., 14098-24-9

The synthetic route of 14098-24-9 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Zielinski, Matthew E.; Tracy, Adam F.; Klumpp, Douglas A.; Tetrahedron Letters; vol. 53; 14; (2012); p. 1701 – 1704;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 63126-47-6

63126-47-6 (S)-2-(Methoxymethyl)pyrrolidine 671217, achiral-catalyst compound, is more and more widely used in various.

63126-47-6, (S)-2-(Methoxymethyl)pyrrolidine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated,63126-47-6

Method B Methyl bromoacetate (199 pI, 2.10 mmol) was added to a mixture of (S)-2- methoxymethyl pyrrolidine (268 pI, 2.17 mmol), potassium carbonate (319 mg, 2.31 mmol) and sodium iodide (315 mg, 2.10 mmol) in acetonitrile (3 ml). The mixture was subjected to microwave irradiation for 5 min at 160¡ãC, then partitioned between dichloromethane and water. The aqueous layer was extracted with dichloromethane and the combined organic layers were washed with brine, dried over sodium sulfate and concentrated in vacuo. Purification by flash column chromatography eluting with 0-10percent (v/v) methanol in dichloromethane afforded (S)- (2-methoxymethyl-pyrrolidin-1- yl) acetic acid methyl ester (133 mg, 0.71 mmol).

63126-47-6 (S)-2-(Methoxymethyl)pyrrolidine 671217, achiral-catalyst compound, is more and more widely used in various.

Reference£º
Patent; AKZO NOBEL N.V.; WO2005/89754; (2005); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 22795-99-9

As the paragraph descriping shows that 22795-99-9 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.22795-99-9,(S)-(1-Ethylpyrrolidin-2-yl)methanamine,as a common compound, the synthetic route is as follows.

EXAMPLE 2 A mixture of (S)-2-(aminomethyl)-1-ethylpyrrolidine (143 g) and methyl 2-methoxy-5-sulfamoylbenzoate (260 g) in n-butanol (1040 ml) was refluxed for 20 hours, then cooled to room temperature and extracted with a solution of concentrated hydrochloric acid (115 g) in water (1040 ml). The aqueous phase was then alkalinized with concentrated ammonia (about 95 g) and the resulting product was filtered and dried, to obtain 277 g of Levosulpiride (75percent molar yield) that, if desired, can be recrystallized from alcohols such as methanol or ethanol., 22795-99-9

As the paragraph descriping shows that 22795-99-9 is playing an increasingly important role.

Reference£º
Patent; BERTOLINI, Giorgio; BOGOGNA, Luigi; PREGNOLATO, Massimo; TERRENI, Marco; VELARDI, Francesco; US2007/105201; (2007); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare