Simple exploration of (3S,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 57-48-7. Application In Synthesis of (3S,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one.

Chemistry is the experimental science by definition. We want to make observations to prove hypothesis. For this purpose, we perform experiments in the lab. , Application In Synthesis of (3S,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one, 57-48-7, Name is (3S,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one, molecular formula is C6H12O6, belongs to chiral-catalyst compound. In a document, author is Ge, Luo, introduce the new discover.

Chiral indole derivatives are ubiquitous motifs in pharmaceuticals and alkaloids. Herein, the first protocol for catalytic asymmetric conjugate addition of Grignard reagents to various sulfonyl indoles, offering a straightforward approach for the synthesis of chiral 3-sec-alkyl-substituted indoles in high yields and enantiomeric ratios is presented. This methodology makes use of a chiral catalyst based on copper phosphoramidite complexes and in situ formation of vinylogous imine intermediates.

A reaction mechanism is the microscopic path by which reactants are transformed into products. Each step is an elementary reaction. In my other articles, you can also check out more blogs about 57-48-7. Application In Synthesis of (3S,4R,5R)-1,3,4,5,6-Pentahydroxyhexan-2-one.

Reference:
Chiral Catalysts,
,Chiral catalysts – SlideShare