Discovery of 1436-59-5

If you are interested in 1436-59-5, you can contact me at any time and look forward to more communication.Application of 1436-59-5

Application of 1436-59-5. Let’s face it, organic chemistry can seem difficult to learn. Especially from a beginner’s point of view. Like 1436-59-5, Name is cis-Cyclohexane-1,2-diamine. In a document type is Article, introducing its new discovery.

Chiral induction has been examined in the four diastereomeric products formed in a series of outer-sphere electron transfer reactions between the oxidants [Co(ox)3]3-, [Co(edta)]-, [Co(gly)(ox)2]2-, C1-cis(N)-[Co(gly)2(ox)]-, [Co(en)(ox)2]-, C2-cis(N)-[Co(gly)2(ox)]- and trans(N)-[Co(gly)2(ox)]- with [Co((RR,SS)-chxn)3]2+ and [Co((R, S)-pn)3]2+ as reductants. The products; [Co((RR,SS)-chxn)3-lel3]3+, [Co((RR,SS)-chxn)3-lel2ob]3+, [Co((RR,SS)-chxn)3-lelob2]3+, [Co((RR,SS)-chxn)3-ob3]3+ and corresponding species for [Co((R, S)-pn)3]3+ show patterns of selectivity which are analyzed in terms of the size and structure of the reactants. The presence of a pseudo-C3 carboxylate face on the oxidant enhances selectivity but the pattern is quite different for those oxidants that contain oxalate as one of their ligands compared with non-oxalate containing species such as [Co(edta)]-. A very simple model is developed in which the reductant employs a limited set of interactions corresponding to the major symmetry axes. The unrestricted reductant has very low aggregate selectvity. Steric and hydrogen bonding patterns in both oxidant and reductant enhance individual interactions resulting in the observed selectivities.

If you are interested in 1436-59-5, you can contact me at any time and look forward to more communication.Application of 1436-59-5

Reference:
Chiral Catalysts,
Chiral catalysts – SlideShare