A new application about 931-40-8

This compound(4-(Hydroxymethyl)-1,3-dioxolan-2-one)Synthetic Route of C4H6O4 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

The chemical properties of alicyclic heterocycles are similar to those of the corresponding chain compounds. Compound: 4-(Hydroxymethyl)-1,3-dioxolan-2-one, is researched, Molecular C4H6O4, CAS is 931-40-8, about Isocyanate-Free Fully Biobased Star Polyester-Urethanes: Synthesis and Thermal Properties, the main research direction is isocyanate free biobased star polyester urethane.Synthetic Route of C4H6O4.

A green strategy for the synthesis of nonisocyanate polyester-urethanes (NIPHEUs) was developed. These NIPHEUs were synthesized by step growth polymerization combining sugar-derived dimethyl-2,5-furan dicarboxylate (DMFD) with polyhydroxylurethanes (PHUs) adducts bearing four hydroxyl groups. The later hydroxyl urethane tetraols (HU-tetraols) building blocks were prepared by aminolysis of glycerol carbonate with two different aliphatic diamines having different chain lengths, 8 and 12 carbons. Qual. and quant. NMR analyses of the HU-tetraols showed the presence of primary and secondary hydroxyl moieties at different ratios. Hence, in the polycondensation stage, the stoichiometry of the diester was varied from 1 to 6 equiv in order to tailor the structural features of the prepared NIPHEUs. The success of the chain extension through polycondensation was confirmed by FTIR and NMR analyses. Thermal analyses of these new polymers demonstrated satisfactory thermal stability, with onset degradation temperatures ranging from 170 to 220°C where the main first degradation stage occurs. Their melting temperatures ranged between 93 and 110°C and seem to be driven by the thermal behavior of HU-tetraol monomers. Surprisingly, preliminary results from thermal analyses revealed the occurrence of a striking thermal change in the NIPHEUs upon repetitive heating cycles. This behavior may be related to a thermal-induced bond exchange probably driven by transcarbamoylation reaction. Such interesting vitrimer-like behavior for this new type of NIPHEUs would be unique and should be confirmed by a deeper study before leading to a new range of functional green materials.

This compound(4-(Hydroxymethyl)-1,3-dioxolan-2-one)Synthetic Route of C4H6O4 was discussed at the molecular level, the effects of temperature and reaction time on the properties of the compound were discussed, and the optimum reaction conditions were selected.

Reference:
Chiral Catalysts,
Chiral catalysts – SlideShare