Chemo-enzymatic cascade processes are invaluable due to their ability to rapidly construct high-value products from available feedstock chemicals in a one-pot relay manner. In an article, author is Jin, Li-Mei, once mentioned the application of 141-22-0, Name is (R,Z)-12-Hydroxyoctadec-9-enoic acid, molecular formula is C18H34O3, molecular weight is 298.46, MDL number is MFCD00084840, category is chiral-catalyst. Now introduce a scientific discovery about this category, Safety of (R,Z)-12-Hydroxyoctadec-9-enoic acid.
Radical reactions hold a number of inherent advantages in organic synthesis that may potentially impact the planning and practice for construction of organic molecules. However, the control of enantioselectivity in radical processes remains one of the longstanding challenges. While significant advances have recently been achieved in intramolecular radical reactions, the governing of asymmetric induction in intermolecular radical reactions still poses challenging issues. We herein report a catalytic approach that is highly effective for controlling enantioselectivity as well as reactivity of the intermolecular radical C-H amination of carboxylic acid esters with organic azides via Co(II)-based metalloradical catalysis (MRC). The key to the success lies in the catalyst development to maximize noncovalent attractive interactions through fine-tuning of the remote substituents of the D-2 symmetric chiral amidoporphyrin ligand. This noncovalent interaction strategy presents a solution that may be generally applicable in controlling reactivity and enantioselectivity in intermolecular radical reactions. The Co(II)-catalyzed intermolecular C-H amination, which operates under mild conditions with the C-H substrate as the limiting reagent, exhibits a broad substrate scope with high chemoselectivity, providing effective access to valuable chiral amino acid derivatives with high enantioselectivities. Systematic mechanistic studies shed light into the working details of the underlying stepwise radical pathway for the Co(II)-based C-H amination.
Do you like my blog? If you like, you can also browse other articles about this kind. Thanks for taking the time to read the blog about 141-22-0, Safety of (R,Z)-12-Hydroxyoctadec-9-enoic acid.
Reference:
Chiral Catalysts,
,Chiral catalysts – SlideShare