Some tips on 1121-22-8

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

A 10 mL sample solution containing 1.0 mg/L of trans-cyclohexane-1,2-diamine was placed in a centrifuge tube with narrow neck (~4 mm i.d.), which was specially designed for ease of removing the supernatant phase. A mixture of 1 mL disperser solvent and 300 muL extracting solvent with 2 mmol L-1 of chiral selector was rapidly injected into the sample solution using a 5.0 mL syringe, and mixed by vortex mixer at 500 rpm stirring rate for 20 min, so that a cloudy solution was formed. The cloudy solution was centrifuged for 5 min at 3500 rpm, and the extraction product (supernatant phase) was collected in the neck of the tube. Finally, this supernatant phase was derivatized and injected into the HPLC. All of the experiments were carried out in triplicate and the average of the result was reported.

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Article; Hashemi, Majid; Hadjmohammadi, Mohammad Reza; Tetrahedron Asymmetry; vol. 28; 3; (2017); p. 454 – 459;,
Chiral Catalysts
Chiral catalysts – SlideShare

Some tips on 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: To a solution of the corresponding sulfonyl chloride (26.0 mmol)in 26 mL of dichloromethane at 0 C, was added rapidly propane-1,3-diamine or (rac)-cyclohexane-1,2-diamine (10 eq., 3 M). Themixturewas allowed to reach roomtemperature andwas stirred during10 h. The crude mixture was filtered and the obtained oil was concentratedunder reduced pressure. Then, 10 mL of ice-water were addedto the concentrated mixture and a solid appeared which was filtrated and washed with cool water and dried under vacuum for 12 h., 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Article; Del Solar, Virginia; Quinones-Lombrana, Adolfo; Cabrera, Silvia; Padron, Jose M.; Rios-Luci, Carla; Alvarez-Valdes, Amparo; Navarro-Ranninger, Carmen; Aleman, Jose; Journal of Inorganic Biochemistry; vol. 127; (2013); p. 128 – 140;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Share a compound : 1121-22-8

1121-22-8 is used more and more widely, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

trans-Cyclohexane-1,2-diamine, cas is 1121-22-8, it is a common heterocyclic compound, the chiral-catalyst compound, its synthesis route is as follows.,1121-22-8

Into a solution containing 1,6-diisocyanatohexane (4.04 grams, 24.0 mmol; obtained from Sigma-Aldrich Fine Chemicals, Milwaukee, Wis.) and anhydrous tetrahydrofuran (100 mL, Sigma-Aldrich Fine Chemicals, Milwaukee, Wis.) stirring at room temperature was added 2-ethylhexanol (3.13 grams, 24.0 mmol, obtained from Sigma-Aldrich Fine Chemicals) and dibutyltin dilaurate (0.38 grams, 0.6 mmol, obtained from Sigma-Aldrich Fine Chemicals) as the catalyst. The mixture was stirred and heated to an internal temperature of about 70 C. The progress of the reaction was monitored by 1H-NMR spectroscopy for the consumption of 2-ethylhexanol starting material, indicated by the disappearance of the -CH2OH multiplet, which appears at 3.5 ppm as a shoulder peak on the downfield end of the intermediate isocyanate product whose signal is located at 3.35-3.40 ppm. The mixture was cooled to about 5 C. internal temperature; thereafter, to this mixture was added dropwise a solution of trans-1,2-diaminocyclohexane (1.37 grams, 12 mmol; obtained as a racemic mixture of (1R,2R) and (1S,2S) stereoisomers from Sigma-Aldrich Fine Chemicals) dissolved in anhydrous tetrahydrofuran (10 mL). The mixture was stirred for about 30 minutes while warming up to room temperature, and thickened to form a gelatinous slurry. FTIR spectroscopic analysis of a reaction sample showed very little unreacted isocyanate (peak at 2180 cm-1, sample prepared as a KBr pellet). Residual isocyanate was quenched by addition of 5 mL of methanol. A crystalline product was isolated from the slurry by first adding methylene chloride (40 mL) followed with stirring for approximately 20 minutes to ensure full precipitation out of the gel slurry. The solid was filtered by suction on a paper filter, rinsed with methylene chloride (about 10 mL), and then dried in air to give 7.36 grams of off-white solid (86% yield). The product was believed to be of the formulae 1H-NMR spectroscopic analysis of the solid was performed in DMSO-d6 (300 MHz) at high temperature (60 C.) and indicated the above structure, with the following assigned peaks: 0.90 ppm (multiplet, 6 H integration, -OCH2CH(CH2CH3)CH2CH2CH2CH3); 1.0-1.95 ppm (broad multiplets, 20 H integration, 8 methylene protons from 2-ethylhexanol portion, 8 methylene protons from the 1,6-diisocyanatohexane portion, and 4 methylene protons from the cyclohexane ring portion); 2.95 ppm (narrow multiplet, 4 H integration, -NH(CO)NHCH2(CH2)4CH2NH(CO)O); 3.20 ppm (broad singlet, 1 H integration, tertiary methine proton adjacent to urea group on cyclohexane ring); 3.90 ppm (doublet, 2 H integration, OCH2CH(CH2CH3)CH2CH2CH2CH3); 5.65 ppm and 5.75 ppm (each a broad singlet, 1 H integration, urea NH protons); 6.75 ppm (broad singlet, 1 H integration, urethane NH proton). Elemental analysis calculated for C: 64.19%, H: 10.49%, N: 11.82%; found for C: 61.70%, H: 9.86%, N: 14.91%.

1121-22-8 is used more and more widely, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Patent; Xerox Corporation; US2006/122415; (2006); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

General procedure: Aldehyde (2.2 mmol, salicylaldehyde or 4-methoxysalicylaldehyde, 4-diethylamino-2-hydroxy benzaldehyde or 2,4-dihydroxybenzaldehyde) was dissolved in ethanol (30 ml) and stirred at room temperature. To this solution, either ethylene diamine (1 mmol) or trans-1,2-diaminocyclohexane (1 mmol) was added drop-wise under stirring. The immediate appearance of yellow colour indicates the formation of Schiff bases. The solution was allowed to stir for another 6 h at room temperature that produced yellow to light yellow coloured precipitates. The formed precipitate was filtered off, washed with ethanol and dried under vacuum.

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Hariharan; Anthony, Savarimuthu Philip; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1658 – 1665;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

It was synthesized from 104.9 mg (64.6 mmol) of[{RuCl2(dppb)}2-m-(dppb)] [17] and 16.2 mg (141.9 mmol) of the cisand trans (¡À) 1,2-diaminocyclohexane (cydn) in CH2Cl2 (5 mL)under argon atmosphere. The result mixture was stirred for10 min at 30 C, and after that the reaction was stopped withhexane (20 mL), which produced a pale yellow solid. The remainedsolid was filtered off by cannula filtration and washed with hexane(3 10 mL) and dried under vacuum. The yield was 101.7 mg (97%).Anal. calc. (found) for C34H42N2Cl2P2Ru: C, 61.19% (60.94); H, 6.26%(6.05); N, 3.48% (3.03); 31P{1H}-NMR (202.46 MHz, CH2Cl2/D2O):delta 44.85 (two broad signals, dppb). CV (TBAH, 0.1 mol L1 CH2Cl2,25 C, scan rate 0.1 V s1): Epa 0.49 V, Epc 0.39 V, E 0.44 V,jIpa/Ipcj 1.10. IR {KBr, 1 cm1}: 3331, 3305 and 3239 (weak, nN-H),3055, 2924 and 2853 (weak,nalkyl-H), 1978, 1905, 1826, 1726 (veryweak, harmonic),1548 (medium, dNH2def.), 1497 and 1434 (medium,narom.), 1095 and 1095 (strong, nC-N), 897 (w), 796 and 743 (strong,tNH2) 696 (very strong, nRu-P), 301 and 255 (medium, nRu-Cl). UV/vis(see Fig. 1S) (CH2Cl2, 1.27 104 mol L1), l/nm (epsilon/L mol1cm1)322 (2824), 462 (313).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Nascimento, Rebecca D.; Silva, Andressa K.; Liao, Luciano M.; Deflon, Victor M.; Ueno, Leonardo T.; Dinelli, Luis R.; Bogado, Andre L.; Journal of Molecular Structure; vol. 1151; (2018); p. 277 – 285;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of 1121-22-8

1121-22-8, The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: To a solution of the corresponding sulfonyl chloride (26.0mmol) in 26mL of dichloromethane at 0C, was added rapidly ethyl-1,2-diamine, propyl-1,3-diamine, or (rac)-cyclohexane-1,2-diamine (10eq., 3.0M). The mixture was allowed to reach room temperature and was stirred during 10h. The crude mixture was filtered and the obtained oil was concentrated under reduced pressure. Then, 10mL of ice-water were added to the concentrated mixture and a solid appeared which was filtrated and washed with cool water and dried under vacuum for 12h.

1121-22-8, The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Article; Perez, Carlos; Diaz-Garcia, C. Vanesa; Agudo-Lopez, Alba; Del Solar, Virginia; Cabrera, Silvia; Agullo-Ortuno, M. Teresa; Navarro-Ranninger, Carmen; Aleman, Jose; Lopez-Martin, Jose A.; European Journal of Medicinal Chemistry; vol. 76; (2014); p. 360 – 368;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

General procedure: To a solution of the corresponding sulfonyl chloride (26.0 mmol)in 26 mL of dichloromethane at 0 C, was added rapidly propane-1,3-diamine or (rac)-cyclohexane-1,2-diamine (10 eq., 3 M). Themixturewas allowed to reach roomtemperature andwas stirred during10 h. The crude mixture was filtered and the obtained oil was concentratedunder reduced pressure. Then, 10 mL of ice-water were addedto the concentrated mixture and a solid appeared which was filtrated and washed with cool water and dried under vacuum for 12 h.

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Del Solar, Virginia; Quinones-Lombrana, Adolfo; Cabrera, Silvia; Padron, Jose M.; Rios-Luci, Carla; Alvarez-Valdes, Amparo; Navarro-Ranninger, Carmen; Aleman, Jose; Journal of Inorganic Biochemistry; vol. 127; (2013); p. 128 – 140;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 1121-22-8

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: To a mortar were added 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.468 g, 2 mmol) and trans-cyclohexane-1,2-diamine (0.114 g,0.123 mL, 1 mmol), and these were mixed over 10 min. The product was recrystallized (CH2Cl2/EtOH 1:9) to give 1a as a bright yellow solid; yield: 0.487 g (89%).

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Article; Civicos, Jose F.; Coimbra, Juliana S. M.; Costa, Paulo R. R.; Synthesis; vol. 49; 17; (2017); p. 3998 – 4006;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 1121-22-8

With the synthetic route has been constantly updated, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

As a common heterocyclic compound, it belong chiral-catalyst compound,trans-Cyclohexane-1,2-diamine,1121-22-8,Molecular formula: C6H14N2,mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

Into a solution containing 1,6-diisocyanatohexane (4.03 grams, 24 mmol; obtained from Sigma-Aldrich Fine Chemicals) and a 1:1 mixture of hexane and tetrahydrofuran (100 milliliters) stirring at room temperature was added a solution containing triethylene glycol monomethacrylate (5.24 grams, 24 mmol; obtained as CD570 from Sartomer Company Inc., Exton, Pa.) dissolved in a 1:1 mixture of hexane and tetrahydrofuran (10 milliliters) and dibutyltin dilaurate (0.075 grams, 0.12 mmol (obtained from Sigma-Aldrich Fine Chemicals) as the catalyst. The mixture was stirred and heated to an internal temperature of 40 C. The progress of the reaction was monitored by 1H-NMR spectroscopy for consumption of the triethylene glycol monomethacrylate reactant. The mixture was cooled to about 15 C. temperature, after which to this mixture was added dropwise a solution of trans-1,2-diaminocyclohexane (1.37 grams, 12 mmol; obtained as a racemic mixture of (1R,2R) and (1S,2S) stereoisomers from Sigma-Aldrich Fine Chemicals) dissolved in a 1:1 mixture of hexane and tetrahydrofuran (10 milliliters). The reaction mixture was stirred for 1 hour while warming up to room temperature. FTIR spectroscopic analysis of a reaction sample showed little unreacted isocyanate (peak at 2180 cm-1, sample prepared as a KBr pellet). Any residual isocyanate reagent was quenched by addition of methanol (5 milliliters). The reaction mixture was then filtered by vacuum filtration to give 6.13 grams of a solid product as a white powder (58 percent yield). 1H-NMR spectroscopic analysis of the solid was performed in DMSO-d6 (300 MHz) at room temperature (25 C.) and exhibited spectral assignments that matched those found for the compound in Example XVIII. The product was believed to be of the formulae

With the synthetic route has been constantly updated, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

Reference£º
Patent; Xerox Corporation; US2006/122415; (2006); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

To a solution containing 1,6-diisocyanatohexane (5.04 grams, 30 mmol; obtained from Sigma-Aldrich Fine Chemicals, Milwaukee, Wis.) and anhydrous tetrahydrofuran (100 milliliters) stirring at room temperature was added 1,4-butanediol vinyl ether (3.48 grams, 30 mmol; obtained from Sigma-Aldrich Fine Chemicals) and dibutyltin dilaurate (0.19 grams, 0.3 mmol; obtained from Sigma-Aldrich Fine Chemicals) as the catalyst. The mixture was stirred and heated to an internal temperature of about 65 C. for 25 minutes. The progress of the reaction was monitored by 1H-NMR spectroscopy for consumption of the 1,4-butanediol vinyl ether reactant, indicated by the disappearance of the -CH2OH multiplet, which appears at 3.5 ppm as a shoulder peak on the downfield end of the intermediate isocyanate product whose signal is located at 3.35-3.40 ppm. The mixture was cooled to about 15 C. internal temperature after which to this mixture was added dropwise a solution of trans-1,2-diaminocyclohexane (1.71 grams, 15 mmol; obtained as a racemic mixture of (1R,2R) and (1S,2S) stereoisomers from Sigma-Aldrich Fine Chemicals) dissolved in anhydrous tetrahydrofuran (10 milliliters). The mixture was stirred for about 60 minutes while warming up to room temperature, and thickened to form a gelatinous slurry. FTIR spectroscopic analysis of a reaction sample showed little unreacted isocyanate (peak at 2180 cm-1, sample prepared as a KBr pellet). Any residual isocyanate was quenched by addition of methanol (5 milliliters). The reaction mixture was then filtered by vacuum filtration to give a semi-solid product, which was subsequently stirred in hexane to ensure full precipitation. The solid product was filtered and dried in air to give 8.17 grams of a white powder (79 percent yield). The product was believed to be of the formulae 1H-NMR spectroscopic analysis of the solid was performed in DMSO-d6 (300 mHz) at high temperature (60 C.) and indicated the above structure with the following assigned peaks: 1.05-1.90 ppm (several multiplets, 16 H integration, 4 methylene protons from 1,4-butanediol vinyl ether portion, 8 methylene protons from the 1,6-diisocyanatohexane portion, and 4 methylene protons from the cyclohexane ring portion); 2.95 ppm (multiplet, 4 H integration, -NH(CO)NHCH2(CH2)4CH2NH(CO)O-); 3.2 ppm (broad singlet, 1 H integration, tertiary methane proton adjacent to urea group on cyclohexane ring); 3.70 ppm (multiplet, 2 H integration, NH(CO)O(CH2)4-O-C(Hc)C(Ha)(Hb)); 3.96 ppm (doublet, 1 H integration, -O-C(Hc)C(Ha)(Hb)); 3.98 ppm (multiplet, 2 H integration, NH(CO)OCH2CH2CH2CH2-O-C(Hc)C(Ha)(Hb)); 4.20 ppm (doublet, 1 H integration, -O-C(Hc)C(Ha)(Hb)); 5.60 ppm and 5.72 ppm (broad singlets, each 1 H integration, urea NH protons); 6.48 ppm (doublet of doublets, 1 H integration, -O-C(Hc)C(Ha)(Hb)); 6.82 ppm (broad singlet, 1 H integration, urethane NH proton). Elemental analysis calculated for C: 59.80%, H: 9.15%, N: 12.31%; found for C: 59.36%, H: 9.53%, N: 12.58%.

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Patent; Xerox Corporation; US2006/122415; (2006); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare