The important role of trans-Cyclohexane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

[0444] This ligand has been described by Van Stein, G C; Van Loten, G; Vrieze, K, Inorg. Chem 1985, 24 (9), 1367-1375. [0445] 19.36 g of anhydrous magnesium sulphate (161.1 mmoles) and 6.44 ml of rac-trans-1,2-diaminocyclohexane (53.6 mmoles) were successively added to a solution of 10 ml of 2-thienylaldehyde (107.1 mmoles) in 75 ml of absolute ethanol. [0446] The reaction mixture was stirred for 16 hours at ambient temperature (the solution thickened very rapidly), heated for 2 hours under reflux then filtered through a frit. [0447] The isolated solid was washed with dichloromethane. [0448] The total filtrate was concentrated completely under reduced pressure to isolate a brown solid which was re-crystallised from ethanol. [0449] 14.0 g of beige crystals were obtained, corresponding to a yield of 86%. [0450] The characteristics were as follows: [0451] M.Pt: 173-175 C. (EtOH); [0452] 1H NMR/CDCl3: delta 8.27 (s, 2H, H7,14), 7.27 (m, 2H, H, 2), 7.14 (m, 2H, H5,16), 6.96 (m, 2H, H3,4), 3.32 (m, 2H, H8,13), 1.82 (m, 6H, H10,11 and H carried by carbons 9 and 12 located in the position cis (or trans) with respect to the adjacent nitrogen atoms), 1.44 (m, 2H, H carried by carbons 9 and 12 located in the trans (or cis) position with respect to the adjacent nitrogen atoms). [0453] 13C NMR/CDCl3: delta 154.32 (C7 and C14), 142.54 (C6 to C15), 130.09 (C1 and C2), 128.20 (C5 and C16), 127.18 (C3 and C4), 73.38 (C8 and C13), 32.83 (C9 and C12), 24.44 (C10 and C11).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Patent; Cellier, Pascal Philippe; Cristau, Henri-Jean; Spindler, Jean-Francis; Taillefer, Marc; US2003/236413; (2003); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

It was prepared according to the method reported by Elshaarawy et al. [23] with slight modifications, in brief, at 70C, rac-trans-1,2-diaminocyclohexane (6mL, 50.0mmol) was added dropwise to a solution of l-(+)-tartaric acid (7.5g, 50.0mmol) in distilled water (20mL). Then the reaction temperature was gradually increased until 90C in order to keep the mixture solubilized. The resulting slurry was stirred at the same temperature for a further 2h, and then the isotropic solution was allowed to spontaneously cool down to RT and then kept at 4C overnight. The resulting precipitate was collected by vacuum filtration and washed with 5C distilled water (2¡Á25mL) and then methanol (5¡Á15mL). The crude product, 3, was then recrystallized by dissolving the compound in distilled water at 90C and leaving to cool to RT overnight. The recrystallization process was repeated twice. The purified product was collected by vacuum filtration and dried under reduced pressure. 1H NMR (200MHz, D2O) delta (ppm): 4.64 (d, J=7.1Hz, 2H), 4.15 (td, J=10.8, 3.9Hz, 1H), 3.98 (td, J=10.6, 4.1Hz, 1H), 2.71 (3, 6H), 2.38-2.13 (m, 4H), 1.67-1.89 (m, 4H).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Elshaarawy, Reda F.M.; Ali, Reham; Saleh, Sayed M.; Janiak, Christoph; Journal of Molecular Liquids; vol. 241; (2017); p. 308 – 315;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of trans-Cyclohexane-1,2-diamine

With the synthetic route has been constantly updated, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO257,mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

19.36 g of anhydrous magnesium sulphate (161.1 mmoles) and 6.44 ml of rac-trans-1,2-diaminocyclohexane (53.6 mmoles) were successively added to a solution of 10 ml of 2-thienylaldehyde (107.1 mmoles) in 75 ml of absolute ethanol. The reaction mixture was stirred for 16 hours at ambient temperature (the solution thickened very rapidly), heated for 2 hours under reflux then filtered through a frit. The isolated solid was washed with dichloromethane. The total filtrate was concentrated completely under reduced pressure to isolate a brown solid which was re-crystallised from ethanol. 14.0 g of beige crystals were obtained, corresponding to a yield of 86%. The characteristics were as follows: M.Pt: 173-175 C. (EtOH); 1H NMR/CDCl3: delta 8.27 (s, 2H, H7,14), 7.27 (m, 2H, H1,2), 7.14 (m, 2H, H5,16), 6.96 (m, 2H, H3,4), 3.32 (m, 2H, H8,13), 1.82 (m, 6H, H10,11 and H carried by carbons 9 and 12 located in the position cis (or trans) with respect to the adjacent nitrogen atoms), 1.44 (m, 2H, H carried by carbons 9 and 12 located in the trans (or cis) position with respect to the adjacent nitrogen atoms). 13C NMR/CDCl3: delta 154.32 (C7 and C14), 142.54 (C6 to C15), 130.09 (C1 and C2), 128.20 (C5 and C16), 127.18 (C3 and C4), 73.38 (C8 and C13), 32.83 (C9 and C12), 24.44 (C10 and C11).

With the synthetic route has been constantly updated, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

Reference£º
Patent; Taillefer, Marc; Cristau, Henri-Jean; Cellier, Pascal-Philippe; US2005/234239; (2005); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 1121-22-8

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Aldehyde (2.2 mmol, salicylaldehyde or 4-methoxysalicylaldehyde, 4-diethylamino-2-hydroxy benzaldehyde or 2,4-dihydroxybenzaldehyde) was dissolved in ethanol (30 ml) and stirred at room temperature. To this solution, either ethylene diamine (1 mmol) or trans-1,2-diaminocyclohexane (1 mmol) was added drop-wise under stirring. The immediate appearance of yellow colour indicates the formation of Schiff bases. The solution was allowed to stir for another 6 h at room temperature that produced yellow to light yellow coloured precipitates. The formed precipitate was filtered off, washed with ethanol and dried under vacuum.

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Article; Hariharan; Anthony, Savarimuthu Philip; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1658 – 1665;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

19.36 g of anhydrous magnesium sulphate (161.1 mmoles) and 6.44 ml of rac-trans-1,2-diaminocyclohexane (53.6 mmoles) were successively added to a solution of 10 ml of 2-thienylaldehyde (107.1 mmoles) in 75 ml of absolute ethanol. The reaction mixture was stirred for 16 hours at ambient temperature (the solution thickened very rapidly), heated for 2 hours under reflux then filtered through a frit. The isolated solid was washed with dichloromethane. The total filtrate was concentrated completely under reduced pressure to isolate a brown solid which was re-crystallised from ethanol. 14.0 g of beige crystals were obtained, corresponding to a yield of 86%. The characteristics were as follows: M.Pt: 173-175 C. (EtOH); 1H NMR/CDCl3: delta 8.27 (s, 2H, H7,14), 7.27 (m, 2H, H1,2), 7.14 (m, 2H, H5,16), 6.96 (m, 2H, H3,4), 3.32 (m, 2H, H8,13), 1.82 (m, 6H, H10,11 and H carried by carbons 9 and 12 located in the position cis (or trans) with respect to the adjacent nitrogen atoms), 1.44 (m, 2H, H carried by carbons 9 and 12 located in the trans (or cis) position with respect to the adjacent nitrogen atoms). 13C NMR/CDCl3: delta 154.32 (C7 and C14), 142.54 (C6 to C15), 130.09 (C1 and C2), 128.20 (C5 and C16), 127.18 (C3 and C4), 73.38 (C8 and C13), 32.83 (C9 and C12), 24.44 (C10 and C11)., 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Patent; Taillefer, Marc; Cristau, Henri-Jean; Cellier, Pascal-Philippe; US2005/234239; (2005); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of trans-Cyclohexane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

N,N’-[(2-ethoxycarbonyl)eth-1-yl]-trans-cyclohexane-1,2-diamine 2a: To freshly distilled trans-1,2-diaminocyclohexane 1 (1 ml, 8.33 mmol) in 50 ml of ethanol was added vinyl propionate (1.50 ml, 13.7 mmol) in one portion. After stirring 20h at room temperature, the reaction mixture was concentrated by rotary evaporation to yield a pale yellow oil (2.6 g, 8.32 mmol, 100%) witch was used directly in the next step. 1H NMR (CDCl3): d 1.22 (t, 12H), 1.67 (m, 2H), 1.82 (m, 2H), 2.06 (m, 2H+2H), 2.43 (t, 4H), 2.67 (dt, 2H), 2.98 (dt, 2H), 4.10 (q, 4H). 13C NMR (CDCl3): d 14.17, 24.31, 31.46, 35.34, 42.19, 60.23, 61.29, 172.69 , (M+H+): 315

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Patent; 99953923.2; EP1123301; (2003); B1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Share a compound : 1121-22-8

1121-22-8 is used more and more widely, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

trans-Cyclohexane-1,2-diamine, cas is 1121-22-8, it is a common heterocyclic compound, the chiral-catalyst compound, its synthesis route is as follows.,1121-22-8

General procedure: Aldehyde (2.2 mmol, salicylaldehyde or 4-methoxysalicylaldehyde, 4-diethylamino-2-hydroxy benzaldehyde or 2,4-dihydroxybenzaldehyde) was dissolved in ethanol (30 ml) and stirred at room temperature. To this solution, either ethylene diamine (1 mmol) or trans-1,2-diaminocyclohexane (1 mmol) was added drop-wise under stirring. The immediate appearance of yellow colour indicates the formation of Schiff bases. The solution was allowed to stir for another 6 h at room temperature that produced yellow to light yellow coloured precipitates. The formed precipitate was filtered off, washed with ethanol and dried under vacuum.

1121-22-8 is used more and more widely, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Hariharan; Anthony, Savarimuthu Philip; Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy; vol. 136; PC; (2015); p. 1658 – 1665;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Brief introduction of 1121-22-8

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: A methanolic solution (10mL) of (¡À)-trans-1,2-diaminocyclohexane (dach) (0.23g, 2.0mmol) in a Schlenk tube, was added dropwise to a methanolic solution (20mL) of salicylaldehyde-imidazolium salt H(iPr)sal(Me2Im+-X-) 3a-c (4.0mmol) into a 100mL Schlenk flask under nitrogen atmosphere. The reaction mixture was stirred under N2 at 60C for 3h. Then the solvent was partially removed under reduced pressure, and the yellow products of 4a-c were precipitated by the addition of ethyl acetate and kept in the refrigerator overnight. Solvent was decanted off and the obtained crude product was sonicated for 15min in Et2O (3¡Á25mL). Et2O was also decanted off and the residual solid was washed intensively with MeOH/Et2O mixture (1:2) to remove unreacted materials and then re-dissolved in MeOH. EtOAc was added slowly (?15min) to precipitate the products as pale yellow-dark orange solids which were collected by filtration and dried under vacuum. Samples of the isolated solids were characterized as follows.

1121-22-8, 1121-22-8 trans-Cyclohexane-1,2-diamine 43806, achiral-catalyst compound, is more and more widely used in various fields.

Reference£º
Article; Elshaarawy, Reda F.M.; Kheiralla, Zeinab H.; Rushdy, Abeer A.; Janiak, Christoph; Inorganica Chimica Acta; vol. 421; (2014); p. 110 – 122;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

General procedure: To a mortar were added 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.468 g, 2 mmol) and trans-cyclohexane-1,2-diamine (0.114 g,0.123 mL, 1 mmol), and these were mixed over 10 min. The product was recrystallized (CH2Cl2/EtOH 1:9) to give 1a as a bright yellow solid; yield: 0.487 g (89%).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Civicos, Jose F.; Coimbra, Juliana S. M.; Costa, Paulo R. R.; Synthesis; vol. 49; 17; (2017); p. 3998 – 4006;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on trans-Cyclohexane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about 1121-22-8,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

General procedure: According to the same procedure described for 2a, white solid of2b was obtained in 71% yield. M.p. 178.5-179.5C. Anal. Calcd forC24H24N2O4 C, 71.27; H, 5.98; N, 6.93. Found: C, 71.20; H, 5.94;N, 6.92. IR (KBr, cm-1): 3434, 3190, 3051, 3025, 2940, 1650, 1612,1443, 1409, 1352, 1319, 1263, 981, 873, 799, 728, 661.

With the complex challenges of chemical substances, we look forward to future research findings about 1121-22-8,belong chiral-catalyst compound

Reference£º
Article; Yu, Yinghua; Chen, Jianxin; Meng, Suqin; Li, Chao; Lan, Meiying; Zhang, Zhichun; Journal of Molecular Catalysis A: Chemical; vol. 380; (2013); p. 104 – 111;,
Chiral Catalysts
Chiral catalysts – SlideShare