The important role of trans-Cyclohexane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

A methanolic solution of ligand trans-cyclohexane-1,2-diamine(0.1142 g, 1 mmol) was added dropwise to a clear solution ofCopper(II) trifluoromethanesulfonate (0.1808 g, 0.5 mmol) inmethanol (10 mL). The resultant solution was stirred at roomtemperature for 6 h to produce a dark blue coloured solution. Thediffraction quality crystals of the titled complex were obtaineddirectly by slow evaporation of the deep bluish methanolic solutionat room temperature. Yield: 0.272 g, 75%, m.p: 258 C, Anal. Calc. forC14H32CuF6N4O8S2: C, 26.86; H, 5.15; N, 8.95. Found: C, 26.54; H,5.32, N, 8.78. Selected FT-IR (KBr), cm1: n(NH2) 3332e3279, n(CH2)2967e2861, n(OH) 3463, n(CueN) 628, n(CueO) 514. UVeVis [lmax(nm), epsilon (L mol1 cm1)]: 243 (8940), 548 (89).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Article; Agrahari, Bhumika; Layek, Samaresh; Kumari, Shweta; Anuradha; Ganguly, Rakesh; Pathak, Devendra D.; Journal of Molecular Structure; vol. 1134; (2017); p. 85 – 90;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Analyzing the synthesis route of 1121-22-8

With the synthetic route has been constantly updated, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

As a common heterocyclic compound, it belong chiral-catalyst compound,trans-Cyclohexane-1,2-diamine,1121-22-8,Molecular formula: C6H14N2,mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

[0395] The ligand was prepared using the method described by Gao. H-X; Zhang, H.; Yi, X-D; Xu, P.-P.; Tang, C.-L.; Wan, H.-L.; Tsai, K.-R.; Ikariya, T.; (Chirality 2000, 12, 383-388). [0396] 12.65 g of anhydrous magnesium sulphate (105.1 mmoles) and 4.2 ml of a racemic trans-1,2-diaminocyclohexane mixture (35.0 mmoles) were successively added to a solution of 6.66 ml of 2-pyridylaldehyde (70.0 mmoles) in 50 ml of absolute ethanol. [0397] The reaction mixture was stirred for 20 hours at ambient temperature (the solution turned yellow after stirring for three hours), heated for 2.5 hours under reflux, then filtered through a frit. [0398] The isolated solid was washed with dichloromethane. [0399] The total filtrate was concentrated completely under reduced pressure to isolate an ochre solid, which was re-crystallised from ethanol. [0400] 8.2 g of pale yellow crystals were obtained, which corresponded to a 80.1% yield. [0401] The characteristics were as follows: [0402] M.Pt: 140-141 C. (EtOH) (racemic mixture) (Lit: 127-129 C.: obtained by Belokon, Y N; North, M: Churkina, T D; Ikonnikov, N S; Maleev, V I; Tetrahedron 2001, 57, 2491-2498 for the stereoisomer 1S,2S, hexane-MeOH); [0403] 1H NMR/CDCl3: delta 8.51 (m, 2H, H1,2), 8.28 (s, 2H, H7,14), 7.84 (m, 2H, H4,17), 6.55-7.64 (m, 2H, H5,16), 7.14-7.21 (m, 2H, H3,18), 3.50 (m, 2H, H8, 13), 1,81 (m, 6H, H10,11 and H carried by carbons 9 and 12 located in the position cis (or trans) with respect to the adjacent nitrogen atoms), 1.40-1.53 (m, 2H, H carried by carbons 9 and 12 located in the trans (or cis) position with respect to the adjacent nitrogen atoms). [0404] 13C NMR/CDCl3: delta 161.42 (C7 and C14), 154.61 (C6 to C15), 149.21 (C1 and C2), 136.39 (C4 and C17), 124.43 (C3 and C18), 121.29 (C5 and C16), 73.53 (C8 and C13), 32.70 (C9 and C12), 24.33 (C10 and C11). [0405] FAB+ (NBA matrix): 293 (100%, M+1), 107 (52%, 2-pyridylaldimine+H+), 92 (38%, C5H4N-CH2+), 119 (25%, C5H4N-CHN-CH2+), 294 (23%, M+2), 204 (22%, [M-(2-pyridylidene)]+), 79 (21%, pyridine+), 187 (20%, M-[2-pyridylineamino]+), 585 (1%, 2M+1).

With the synthetic route has been constantly updated, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

Reference£º
Patent; Cellier, Pascal Philippe; Cristau, Henri-Jean; Spindler, Jean-Francis; Taillefer, Marc; US2003/236413; (2003); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of trans-Cyclohexane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO112,mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

General procedure: To a mortar were added 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.468 g, 2 mmol) and trans-cyclohexane-1,2-diamine (0.114 g,0.123 mL, 1 mmol), and these were mixed over 10 min. The product was recrystallized (CH2Cl2/EtOH 1:9) to give 1a as a bright yellow solid; yield: 0.487 g (89%).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

Reference£º
Article; Civicos, Jose F.; Coimbra, Juliana S. M.; Costa, Paulo R. R.; Synthesis; vol. 49; 17; (2017); p. 3998 – 4006;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of 1121-22-8

The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

Into a solution containing 1,6-diisocyanatohexane (4.04 grams, 24.0 mmol; obtained from Sigma-Aldrich Fine Chemicals, Milwaukee, Wis.) and anhydrous tetrahydrofuran (100 mL, Sigma-Aldrich Fine Chemicals, Milwaukee, Wis.) stirring at room temperature was added 2-ethylhexanol (3.13 grams, 24.0 mmol, obtained from Sigma-Aldrich Fine Chemicals) and dibutyltin dilaurate (0.38 grams, 0.6 mmol, obtained from Sigma-Aldrich Fine Chemicals) as the catalyst. The mixture was stirred and heated to an internal temperature of about 70 C. The progress of the reaction was monitored by 1H-NMR spectroscopy for the consumption of 2-ethylhexanol starting material, indicated by the disappearance of the -CH2OH multiplet, which appears at 3.5 ppm as a shoulder peak on the downfield end of the intermediate isocyanate product whose signal is located at 3.35-3.40 ppm. The mixture was cooled to about 5 C. internal temperature; thereafter, to this mixture was added dropwise a solution of trans-1,2-diaminocyclohexane (1.37 grams, 12 mmol; obtained as a racemic mixture of (1R,2R) and (1S,2S) stereoisomers from Sigma-Aldrich Fine Chemicals) dissolved in anhydrous tetrahydrofuran (10 mL). The mixture was stirred for about 30 minutes while warming up to room temperature, and thickened to form a gelatinous slurry. FTIR spectroscopic analysis of a reaction sample showed very little unreacted isocyanate (peak at 2180 cm-1, sample prepared as a KBr pellet). Residual isocyanate was quenched by addition of 5 mL of methanol. A crystalline product was isolated from the slurry by first adding methylene chloride (40 mL) followed with stirring for approximately 20 minutes to ensure full precipitation out of the gel slurry. The solid was filtered by suction on a paper filter, rinsed with methylene chloride (about 10 mL), and then dried in air to give 7.36 grams of off-white solid (86% yield). The product was believed to be of the formulae 1H-NMR spectroscopic analysis of the solid was performed in DMSO-d6 (300 MHz) at high temperature (60 C.) and indicated the above structure, with the following assigned peaks: 0.90 ppm (multiplet, 6 H integration, -OCH2CH(CH2CH3)CH2CH2CH2CH3); 1.0-1.95 ppm (broad multiplets, 20 H integration, 8 methylene protons from 2-ethylhexanol portion, 8 methylene protons from the 1,6-diisocyanatohexane portion, and 4 methylene protons from the cyclohexane ring portion); 2.95 ppm (narrow multiplet, 4 H integration, -NH(CO)NHCH2(CH2)4CH2NH(CO)O); 3.20 ppm (broad singlet, 1 H integration, tertiary methine proton adjacent to urea group on cyclohexane ring); 3.90 ppm (doublet, 2 H integration, OCH2CH(CH2CH3)CH2CH2CH2CH3); 5.65 ppm and 5.75 ppm (each a broad singlet, 1 H integration, urea NH protons); 6.75 ppm (broad singlet, 1 H integration, urethane NH proton). Elemental analysis calculated for C: 64.19%, H: 10.49%, N: 11.82%; found for C: 61.70%, H: 9.86%, N: 14.91%., 1121-22-8

The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; Xerox Corporation; US2006/122415; (2006); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Simple exploration of 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

General procedure: Salen ligands were obtained in the stoichiometric reaction of salicylic aldehyde and trans-1,2-diaminocyclohexane in 96% ethanol solution according to [13c]. Reactions were carried out in 50 ml three-neck round-bottomed flask, equipped with reflux condenser, dropping funnel, magnetic stirrer and heating mantle. The solution of trans-1,2-diaminocyclohexane (0,57 ml, 5 mmol) in EtOH (10 ml) was slowly added to a hot solution of appropriate aldehyde (10 mmol) in EtOH (20 ml). The reaction mixture was heated at reflux for 1.5 h. After cooling to room temperature, the yellow precipitate that formed was filtered off and washed with cold EtOH (5 ml). The ligands were used without further purification. (¡À)-trans-N,N-bis(5-methoxy-3-tert-butylsalicylidene)-1,2-cyclohexanediamine (H2salcn(BuOMe)) Anal. Calc. for C30H42N2O2: C, 72.84%; H, 8.56%; N, 5.66%; C/N = 12.87. Found: C, 72.63%; H, 8.45%; N, 5.68%; C/N = 12.78. 1H-NMR (CDCl3): delta = 13.40 (bs, 2H), 8.24 (s, 2H), 6.90 (m, 2H), 6.48 (m,2H), 3.69 (s, 6H), 3.32 (m, 2H), 1.99 (m, 2H), 1.89 (m, 2H), 1.77 (m, 2H), 1.47 (m, 2H), 1.39 (s, 18H). Yield: 1.33 g, 54%, mp = 146-149 C., 1121-22-8

As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Article; Tomczyk; Nowak; Bukowski; Bester; Urbaniak; Andrijewski; Olejniczak; Electrochimica Acta; vol. 121; (2014); p. 64 – 77;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of 1121-22-8

1121-22-8, The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

1121-22-8, trans-Cyclohexane-1,2-diamine is a chiral-catalyst compound, ?involved in a variety of chemical synthesis. Rlated chemical reaction is continuously updated

N,N’-[(2-ethoxycarbonyl)eth-1-yl]-trans-cyclohexane-1,2-diamine 2a: To freshly distilled trans-1,2-diaminocyclohexane 1 (1 ml, 8.33 mmol) in 50 ml of ethanol was added vinyl propionate (1.50 ml, 13.7 mmol) in one portion. After stirring 20h at room temperature, the reaction mixture was concentrated by rotary evaporation to yield a pale yellow oil (2.6 g, 8.32 mmol, 100%) witch was used directly in the next step. 1H NMR (CDCl3): d 1.22 (t, 12H), 1.67 (m, 2H), 1.82 (m, 2H), 2.06 (m, 2H+2H), 2.43 (t, 4H), 2.67 (dt, 2H), 2.98 (dt, 2H), 4.10 (q, 4H). 13C NMR (CDCl3): d 14.17, 24.31, 31.46, 35.34, 42.19, 60.23, 61.29, 172.69 , (M+H+): 315

1121-22-8, The synthetic route of 1121-22-8 has been constantly updated, and we look forward to future research findings.

Reference£º
Patent; 99953923.2; EP1123301; (2003); B1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

The important role of 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Name is trans-Cyclohexane-1,2-diamine, as a common heterocyclic compound, it belongs to chiral-catalyst compound, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

12.65 g of anhydrous magnesium sulphate (105.1 mmoles) and 4.2 ml of a racemic trans-1,2-diaminocyclohexane mixture (35.0 mmoles) were successively added to a solution of 6.66 ml of 2-pyridylaldehyde (70.0 mmoles) in 50 ml of absolute ethanol. The reaction mixture was stirred for 20 hours at ambient temperature (the solution turned yellow after stirring for three hours), heated for 2.5 hours under reflux, then filtered through a frit. The isolated solid was washed with dichloromethane. The total filtrate was concentrated completely under reduced pressure to isolate an ochre solid, which was re-crystallised from ethanol. 8.2 g of pale yellow crystals were obtained, which corresponded to a 80.1% yield. The characteristics were as follows: M.Pt: 140-141 C. (EtOH) (racemic mixture) (Lit: 127-129 C.: obtained by Belokon, Y N; North, M: Churkina, T D; Ikonnikov, N S; Maleev, V I; Tetrahedron 2001, 57, 2491-2498 for the stereoisomer 1S,2S, hexane-MeOH); 1H NMR/CDCl3: delta 8.51 (m, 2H, H1,2), 8.28 (s, 2H, H7,14), 7.84 (m, 2H, H4,17), 6.55-7.64 (m, 2H, H5,16), 7.14-7.21 (m, 2H, H3,18), 3.50 (m, 2H, H8,13), 1,81 (m, 6H, H10,11 and H carried by carbons 9 and 12 located in the position cis (or trans) with respect to the adjacent nitrogen atoms), 1.40-1.53 (m, 2H, H carried by carbons 9 and 12 located in the trans (or cis) position with respect to the adjacent nitrogen atoms). 13C NMR/CDCl3: delta 161.42 (C7 and C14), 154.61 (C6 to C15), 149.21 (C1 and C2), 136.39 (C4 and C17), 124.43 (C3 and C18), 121.29 (C5 and C16), 73.53 (C8 and C13), 32.70 (C9 and C12), 24.33 (C10 and C11). FAB+ (NBA matrix): 293 (100%, M+1), 107 (52%, 2-pyridylaldimine+H+), 92 (38%, C5H4N-CH2+), 119 (25%, C5H4N-CHN-CH2+), 294 (23%, M+2), 204 (22%, [M-(2-pyridylidene)]+), 79 (21%, pyridine+), 187 (20%, M-[2-pyridylineamino]+), 585 (1%, 2M+1).

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine

Reference£º
Patent; Taillefer, Marc; Cristau, Henri-Jean; Cellier, Pascal-Philippe; US2005/234239; (2005); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 1121-22-8

With the complex challenges of chemical substances, we look forward to future research findings about 1121-22-8,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to chiral-catalyst compound, name is trans-Cyclohexane-1,2-diamine, and cas is 1121-22-8, its synthesis route is as follows.,1121-22-8

Reference Example 35 Production of (2RS,4aSR,8aSR)-2-ethyldecahydroquinoxaline Relative confi uration Dichloro(pentamethylcyclopentadienyl)iridium (III) dimer (70 mg, 0.090 mmol) and sodium bicarbonate (73 mg, 0.87 mmol) were added to an aqueous (20 mL) solution of trans-cyclohexane-l,2-diamine (2.00 g, 17.5 mmol) and (¡À)-l,2-butanediol (1.69 mL, 18.4 mmol) with stirring at room temperature. Degassing and argon substitution were repeated 3 times, and the mixture was then stirred for 24 hours under reflux. The reaction mixture was concentrated under reduced pressure. The obtained residue was purified by basic silica gel column chromatography (methylene chloride/methanol) to obtain (2R*,4aS*,8aS*)-2- ethyldecahydroquinoxaline (2.03 g, yield: 69%) in a yellow solid form. 1H-NMR(CDCl3)5ppm : 0.92 (3H, t, J = 7.5 Hz), 1.10-1.60 (7H, m), 1.64-1.83 (5H, m), 2.16- 2.31 (2H, m), 2.44 (IH, dd, J = 11.5, 10.4 Hz), 2.58-2.67 (1H, m), 3.02 (1H, dd, J = 11.5, 2.7 Hz).

With the complex challenges of chemical substances, we look forward to future research findings about 1121-22-8,belong chiral-catalyst compound

Reference£º
Patent; OTSUKA PHARMACEUTICAL CO., LTD.; SHINOHARA, Tomoichi; SASAKI, Hirofumi; TAI, Kuninori; ITO, Nobuaki; WO2013/137479; (2013); A1;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Some tips on 1121-22-8

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

With the rapid development and complex challenges of chemical substances, new drug synthesis pathways are usually the most effective.1121-22-8,trans-Cyclohexane-1,2-diamine,as a common compound, the synthetic route is as follows.

General procedure: To a solution of the corresponding sulfonyl chloride (26.0 mmol)in 26 mL of dichloromethane at 0 C, was added rapidly propane-1,3-diamine or (rac)-cyclohexane-1,2-diamine (10 eq., 3 M). Themixturewas allowed to reach roomtemperature andwas stirred during10 h. The crude mixture was filtered and the obtained oil was concentratedunder reduced pressure. Then, 10 mL of ice-water were addedto the concentrated mixture and a solid appeared which was filtrated and washed with cool water and dried under vacuum for 12 h.

1121-22-8, As the paragraph descriping shows that 1121-22-8 is playing an increasingly important role.

Reference£º
Article; Del Solar, Virginia; Quinones-Lombrana, Adolfo; Cabrera, Silvia; Padron, Jose M.; Rios-Luci, Carla; Alvarez-Valdes, Amparo; Navarro-Ranninger, Carmen; Aleman, Jose; Journal of Inorganic Biochemistry; vol. 127; (2013); p. 128 – 140;,
Chiral Catalysts
Chiral catalysts – SlideShare

 

Downstream synthetic route of trans-Cyclohexane-1,2-diamine

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

As a common heterocyclic compound, it belongs to quinuclidine compound,Quinuclidine-4-carboxylic acid hydrochloride,40117-63-3,Molecular formula: C8H14ClNO85,mainly used in chemical industry, its synthesis route is as follows.,1121-22-8

Paraformaldehyde (0.32 g) was mixed with N,N-dimethylformamide (1.92 g) and heated to 80 C to make a slurry. (¡À)-trans-1,2-Cyclohexanediamine (2) (Aldrich 270016) (0.53 g) was added to the slurry, where upon the mixture turned orange. The mixture was heated for 0.5 h at 80 C, then cooled and left for one week. The mixture was filtered and the crystals washed with ethanol to afford the 1,8,10,17-tetraazapentacyclo[8.8.1.18,17.02,7.011,16]icosane (4) (0.46 g; 71%). The product was recrystalised from a mixture of 1 part petroleum ether, 2 parts hexanes and 1.3 parts ethyl acetate (by volume; total volume 21.5 mL). Insoluble material was removed by filtration and the filtrate left to crystallize to afford off-white prisms (67% recovery), m.p. 210 C.

With the complex challenges of chemical substances, we look forward to future research findings about trans-Cyclohexane-1,2-diamine,belong chiral-catalyst compound

Reference£º
Article; Hendsbee, Arthur; Vaughan, Keith; Journal of Molecular Structure; vol. 1050; (2013); p. 1 – 4;,
Chiral Catalysts
Chiral catalysts – SlideShare