If you¡¯re interested in learning more about 87-69-4. The above is the message from the blog manager. SDS of cas: 87-69-4.
A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, SDS of cas: 87-69-4, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 87-69-4, Name is (2R,3R)-2,3-Dihydroxysuccinic acid, molecular formula is C4H6O6. In an article, author is Qian, Deyun,once mentioned of 87-69-4.
A small-molecule collection with structural diversity and complexity is a prerequisite to using either drug candidates or chemical probes for drug discovery and chemical-biology investigations, respectively. Over the past 12 years, we have engaged in developing efficient diversity-oriented cascade strategies for the synthesis of topologically diverse skeletons incorporating biologically relevant structural motifs such as O- and N-heterocycles, fused polycydes, and multifunctionalized allenes. In particular, we have highlighted the use of simple, linear, and densely functionalized molecular platforms in these reactions. This account details our efforts in the design of novel molecular platforms for use in metal-and organo-catalyzed cascade reactions, which include 2-(1-alknyI)-2-alken-1-ones (yne-enones) for heterocyclization/cross-coupling cascades, heterocyclization/cycloaddition cascades, nudeophilic addition/cross-coupling cascades, nudeophilic addition/heterocydization cascades, and so on. Moreover, this Account outlines corresponding mechanistic insights, computational information, and applications of these cascades in the construction of various highly substituted carbo- and heterocydes as well as highly functionalized acyclic compounds, e.g., allenes and dienes. In addition to yne-enones, we evolved the functional groups of our original yne-enones to provide a series of yne-enone variants, which resulted in products with complementary reactivities. The reactivity profile of the yne-enones is defined by the presence of an alkyne moiety and a conjugated enone unit and their mutual through-bond connectivity. Owing to the conceptually rapid development of carbophilic activation, we have identified a series of efficient catalytic systems consisting of metal catalysts, induding Pd, Au, and Rh complexes, for diversity-oriented cascade catalysis, allowing various unprecedented reactions to be achieved through different-types of reaction intermediates, including allcarbon metal 1,n-dipoles, furan-based o-quinodimethanes (oQDMs), and allenyl-metal species. In addition to commonly known transition-metal catalytic activity, the Lewis acidity of these complexes is crucial to accomplish the corresponding transformation. In addition, highly enantioselective gold(I)-catalyzed heterocydization/cycloaddition cascades of yne-enones and their variants were achieved by the application of bisphosphines (e.g., Cn-TunePhos), monophosphines, and our developed Ming-Phos as chiral ligands. Importantly, Ming-Phos ligands exhibited excellent performance in gold-catalyzed mechanistically distinct [3 + n]-cydoaddition reactions, in which the chiral sulfinamide moiety is possibly responsible for the interaction with the substrate to control enantioselectivity. Subsequently, we demonstrated that the easily prepared polymer-supported Ming-Phos ligand could be applied for heterogeneously gold(I)-catalyzed asymmetric cycloaddition with good stereocontrol. With metal-free catalysis, the divergent functionalization of yne-enones provides numerous synthetic outlets for structure diversification. For example, yne- enones are particularly attractive for use as precursors of various chiral and achiral heterocycles, such as pyrazoles, isoxazoles, pyrroles, and pyrans, etc.
If you¡¯re interested in learning more about 87-69-4. The above is the message from the blog manager. SDS of cas: 87-69-4.
Reference:
Chiral Catalysts,
,Chiral catalysts – SlideShare