Extended knowledge of 1806-29-7

Interested yet? Keep reading other articles of 1806-29-7!, COA of Formula: C12H10O2

Children learn through play, and they learn more than adults might expect. Science experiments are a great way to spark their curiosity, get their minds active, and encourage them to do something that doesn¡¯t involve a screen. 1806-29-7, C12H10O2. A document type is Article, introducing its new discovery., COA of Formula: C12H10O2

Further characterization of mitsunobu-type intermediates in the reaction of dialkyl azodicarboxylates with P(III) compounds

Structural characterization of compounds analogous to the proposed intermediates in the Mitsunobu esterification process is achieved by the combined use of NMR spectroscopy and X-ray diffractometric studies. The results show that compounds (t-BuNH)P(mu-N-t-Bu)2P[(N-t-Bu)(N-(CO 2R)-N(H)(CO2R))] [R = Et (11), i-Pr (12)], obtained by treating [(t-Bu-NH)P-mu-N-t-Bu]2 (10) with diethylazodicarboxylate (DEAD) or diisopropylazodicarboxylate (DIAD), respectively, have a structure with the NH proton residing between the two nitrogen atoms ((P)N(t-Bu) and (P)N-N(CO2Et)); this is the tautomeric form of the expected betaine (t-BuNH)P(mu-N-t-Bu)2P+[(NH-t-Bu)(N-(CO 2R)-N-(CO2R)]. Treatment of ClP(mu-N-t-Bu) 2P[(N-t-Bu){N-(CO2-i-Pr)-N(H)(CO2-i-Pr)] (6) with 2,6-dicholorophenol affords (2,6-Cl2-C6H 3-O)P-(mu-N-t-Bu)2P+[(NH-t-Bu){N[(CO 2i-Pr)(HNCO2i-Pr)]}](Cl-)(2,6-Cl 2-C6H3-OH) (14) that has a structure similar to that of (CF3CH2O)P(mu-N-t-Bu)2P +[(NH-t-Bu){N[(CO2i-Pr)(HNCO2i-Pr)]}](Cl -) (13), but with an additional hydrogen bonded phenol. Both of these have the protonated betaine structure analogous to that of Ph3P +N(CO2R)NH(CO2R)(R?CO2) – (2) proposed in the Mitsunobu esterification. Two other compounds, (ArO)P(mu-N-t-Bu)2P+(NH-t-Bu){N(CO2i-Pr) (HNCO2i-Pr)}(Cl-) [Ar = 2,6-Me2C 6H3O- (15) and 2-Me-6-t-Bu-C6H3-O- (16)], are also prepared by the same route. Although NMR tube reactions of 11 or 12 with tetrachlorocatechol, catechol, 2,2?-biphenol, and phenol revealed significant changes in the 31P NMR spectra, attempted isolation of these products was not successful. On the basis of 31P NMR spectra, the phosphonium salt structure (t-BuNH)P(mu-N-t-Bu)2P +[(HN-t-Bu){N-(CO2R)-N(H)(CO2R)]-(ArO -) is proposed for these. The weakly acidic propan-2-ol or water did not react with 11 or 12, Treatment of 12 with carboxylic acids/p-toluenesulfonic acid gave the products (t-BuNH)P(mu-N-t-Bu)2P+[(HN-t- Bu){N-(CO2-i-Pr)-N(H)(CO2-i-Pr)](ArCO2-) [Ar = Ph (18), 4-Cl-C6H4CH2 (19), 4-Br-C 6H4 (20), 4-NO2-C6H4 (21)] and (t-BuNH)P(mu-N-t-Bu)2P+|(HN-t-Bu){N-(CO 2-i-Pr)-N(H)(CO2-i-Pr)](4-CH3-C 6H4SO3-) (22) that have essentially the same structure as 2. Compound 18 has additional stabilization by hydrogen bonding, as revealed by X-ray structure determination. Finally it is shown that the in situ generated (t-BuNH)P(mu-N-t-Bu)2P+[(HN-t-Bu) {N-(CO2Et)-N(H)(CO2Et)](4-NO2-C 6H4CO2-) can also effect Mitsunobu esterification. A comparison of the Ph3P-DIAD system with the analogous synthetically useful Ph3P-dimethyl acetylenedicarboxylate (DMAD) system is made.

Interested yet? Keep reading other articles of 1806-29-7!, COA of Formula: C12H10O2

Reference£º
Chiral Catalysts,
Chiral catalysts – SlideShare