The important role of 21436-03-3

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Product Details of 21436-03-3, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 21436-03-3, in my other articles.

A catalyst don’t appear in the overall stoichiometry of the reaction it catalyzes, but it must appear in at least one of the elementary reactions in the mechanism for the catalyzed reaction. 21436-03-3, Name is (1S,2S)-Cyclohexane-1,2-diamine, molecular formula is C6H14N2. In a Article,once mentioned of 21436-03-3, Product Details of 21436-03-3

Simple and commercially available chiral 1,2-diamines were used as organocatalysts for the enantioselective conjugate addition of aldehydes, including alpha,alpha-disubstituted, to maleimides. The reaction was carried out in the presence of hexanedioic acid as an additive in aqueous solvents at room temperature. By employing (1S,2S)- and (1R,2R)-cyclohexane-1,2-diamine as organocatalysts, the corresponding Michael adducts bearing new stereocenters were obtained in high or quantitative yields with enantioselectivities of up to 92%, whereas the use of (1S,2S)-1,2-diphenylethane-1,2-diamine gave a much lower ee. Theoretical calculations were used to justify the observed sense of the stereoinduction.

Sometimes chemists are able to propose two or more mechanisms that are consistent with the available data.Product Details of 21436-03-3, If a proposed mechanism predicts the wrong experimental rate law, however, the mechanism must be incorrect.Welcome to check out more blogs about 21436-03-3, in my other articles.

Reference:
Chiral Catalysts,
Chiral catalysts – SlideShare